4,539 research outputs found

    A parameter robust numerical method for a two dimensional reaction-diffusion problem.

    Get PDF
    In this paper a singularly perturbed reaction-diffusion partial differential equation in two space dimensions is examined. By means of an appropriate decomposition, we describe the asymptotic behaviour of the solution of problems of this kind. A central finite difference scheme is constructed for this problem which involves an appropriate Shishkin mesh. We prove that the numerical approximations are almost second order uniformly convergent (in the maximum norm) with respect to the singular perturbation parameter. Some numerical experiments are given that illustrate in practice the theoretical order of convergence established for the numerical method

    Exact phase space functional for two-body systems

    Full text link
    The determination of the two-body density functional from its one-body density is achieved for Moshinsky's harmonium model, using a phase-space formulation, thereby resolving its phase dilemma. The corresponding sign rules can equivalently be obtained by minimizing the ground-state energy.Comment: Latex, 12 page

    Fourier analysis on the affine group, quantization and noncompact Connes geometries

    Full text link
    We find the Stratonovich-Weyl quantizer for the nonunimodular affine group of the line. A noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of Connes, is obtained from it. The corresponding Wigner functions reproduce the time-frequency distributions of signal processing. The same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by Kirillov.Comment: 37 pages, Latex, uses TikZ package to draw 3 figures. Two new subsections, main results unchange

    A Renormalization Group Analysis of the NCG constraints m_{top} = 2\,m_W}, mHiggs=3.14mWm_{Higgs} = 3.14 \, m_W

    Full text link
    We study the evolution under the renormalization group of the restrictions on the parameters of the standard model coming from Non-Commutative Geometry, namely mtop=2mWm_{top} = 2\,m_W and mHiggs=3.14mWm_{Higgs} = 3.14 \, m_W. We adopt the point of view that these relations are to be interpreted as {\it tree level} constraints and, as such, can be implemented in a mass independent renormalization scheme only at a given energy scale μ0\mu_0. We show that the physical predictions on the top and Higgs masses depend weakly on μ0\mu_0.Comment: 7 pages, FTUAM-94/2, uses harvma

    The Kirillov picture for the Wigner particle

    Get PDF
    We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincar\'e group, labelled by elements of the enveloping algebra of the Poincar\'e Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described.Comment: 19 pages; v2: updated to coincide with published versio
    corecore